Portfólio de Metodologia Científica - Semana 5

Levantando dados e InformaçõesO uso de entrevistas em pesquisas qualitativas é tema recorrente em Metodologia de Científica, pois se trata de um procedimento de coleta de dados importante e que muitas vezes é utilizado de forma superficial. Cabe aos pesquisadores que fazem uso de entrevistas em suas investigações deixar claras as regras e pressupostos teórico/metodológicos que norteiam seu trabalho e estudo do fenômeno, de modo a evidenciar que os dados coletados e sua análise são consistentes. Para tanto, é necessária a definição de critérios para avaliação de confiabilidade. Esta aula tem como objetivo contribuir com a realização dessa tarefa.      

 
PARA BAIXAR O FILME

Kinsey - Vamos Falar de Sexo

CLIQUE AQUI
Nesta videoaula vimos que as entrevistas são uma importante ferramenta para a pesquisa. Os dados coletados nas entrevistas nos permitem compilar informações que tornearão o nosso trabalho/projeto. A entrevista pode ser aplicada tanto para estudo qualitativos quanto para estudos quantitativos, porém seu poder pode ser melhor observado num estudo qualitativo, que é quando podemos tomar a percepção dos entrevistados para entendermos melhor determinado fenômeno. Para esse propósito, a entrevista deve ser elaborada pensando-se em que dados/informações queremos levantar.
A entrevista é uma conversação metódica que proporciona verbalmente as informações necessárias. Neste contexto a entrevista “Semi-estruturada” é de extrema importância, pois estabelece um roteiro que nos permite guiar a conversação de modo flexível, para que possamos, se necessário, acrescentar perguntas no decorrer da entrevista.

Há vários tipos de entrevistadores, cada um de nós devemos ter um estilo próprio que que permita deixar o entrevistado o mais confortável possível.
A entrevista pode tratar de dois aspectos:
  • Dados primários: informações diretas
  • Dados secundários: vem de outras pessoas ou dados interpretados
Planejamento da Entrevista:
  • Explicar detalhes da entrevista
  • Criar um ambiente agradável
  • Favorecer o entrevistado
  • Registrar tudo
  • Atentar ao tempo
  • Terminar com elegância
  • Número não pequeno de Informantes , para que possamos ter uma melhor visão do assunto.
  •  
     
    MAIS COISAS SOBRE O ASSUNTO..

AULA 17, 18, 19 E 20 - PORTFÓLIO CALCULO 1 SEMANA 05


Problemas e Exercícios da Semana 5
Samuel Rocha Oliveira e Adolfo Maia Jr.

1            Vídeo-Aula 17

1.    Seja a função
f(x) = x2 lnx, x ∈ (0,+∞)
Encontre os pontos críticos e classifique-os. Encontre também os intervalos de crescimento e decrescimento. Use somente a primeira derivada.
2.    Encontre os pontos de máximo e mínimo da função

com x ∈ (0,1].
3.    Se a e b são números positivos, encontre o valor máximo de
.

2            Video-Aula 18

1.    Encontre os valores máximo e mínimo absolutos da função
no intervalo [0,2].
2.    Analise a função
f(x) = sinx + cosx, 0 ≤ x ≤ 2π.
Encontre os pontos críticos e classifique-os. Encontre também os intervalos de crescimento, decrescimento e concavidade. Faça um esbôço do gráfico de f.
3.    Esboce o gráfico de uma função que satisfaz as seguintes condições:
(a)      f(x) > 0, x = 1̸
(b)      tem uma assíntota vertical em x = 1
(c) f′′(x) > 0,
se x < 1 ou x > 3
(d) f′′(x) < 0,
se 1 < x < 3.

3            Video-aula 19

1.    Seja a funçãof(x) = xex.
(a)      Encontre a Série de Taylor em torno do ponto x = 0 (usualmente denominada Série de MacLaurin).
(b)      Encontre a Série de Taylor em torno do ponto x = 1.
2.    Considere a função f(x) = xex do Exercício 1.
(a)      calcule a integral
(b)      Mostre que, substituindo f(x) pelo Polinômio de Taylor T3(x), temos uma aproximação da integral com erro menor que 5%.
3.    Seja a função
.
(a)      Calcule as proximações T2(x) da Série de MacLaurin de
                                                              g(x) = √1 − x      e   
Obs: Denote-as, respectivamente, T2[g](x) e T2[h](x).
(b)      Use o resultado de (a) para calcular uma aproximação de MacLaurin de T4[f](x).
Obs: Escrevemos a palavra ”uma” porque, se você observar bem, vai perceber que faltam, nesta aproximação, alguns termos de potência x4. O método usado neste exercício calcula a ”aproximação de uma aproximação”.
(c)      Calcule o êrro .

4            Video-aula 20

1.    Calcule a área compreendida entre o gráfico da função f(x) = x e o eixo-x, no intervalo [0,1], usando a definição de integral por Somas de Riemann.
2.    Considere a integral
1
I = ∫ √xdx

(a)      calcule o valor exato da integral.
(b)      Calcule a Soma de Riemann inferior s5 ( 5 têrmos), usando uma partição homogênea do intervalo [0,1].
(c)      Calcule o êrro absoluto E = |I s5| da aproximação, com 3 casas decimais.
3.    Considere a integral

I = ∫ lnxdx

(a)      Calcule o valor exato da integral
(b)      Calcule a Soma de Riemann superior S5 (5 têrmos), usando uma partição homogênea do intervalo [1,2].
(c)      Calcule o erro absoluto E = |I S5| da aproximação, com 3 casas decimais.
4.                      videoaula 17
5.                      Exercício 1
6.                      Seja a função f(x)=x2lnx,x(0,+∞). Encontre os pontos críticos e classifique-os. Encontre também os intervalos de crescimento e decrescimento. Use somente a primeira derivada.
7.                      Resp: Pontos críticos: um ponto cDom(f) é crítico se f(c)=0 ou ̸f(c). Calculemos então f(x):

8.                      f(x)=2xlnx+x21x=2xlnx+x=x(2lnx+1)
9.                     
Logo, se 
f(x)=0, então x=0 ou x=e−1/2. Como 0Dom(f), então o único ponto crítico é x=e−1/2≈0,606531. Para determinarmos se o ponto é de máximo ou mínimo, devemos analisar o que ocorre na vizinha do ponto crítico:
10.                  1-Se a derivada de f é positiva à esquerda de x=c e é negativa à direita de x=c, então x=c é um ponto de máximo para f.
2 – Se a derivada de 
f é negativa à esquerda de x=c e é positiva à direita de x=c, então x=c é um ponto de mínimo para f.
11.                  Se tomardos os pontos x=0,5 e x=0,7 teremos: f(0,5)≈−0,19315 e f(0,7)≈0,200655, logo ocorre o caso número 2 e x=e−1/2 é ponto de mínimo.
12.                  Sabendo que o único ponto crítico é x=e−1/2 e sabendo, também, o comportamento da derivada à esquerda e à direita do ponto crítico, podemos afirmar que o intervalo os intervalos de decrescimento e crescimento são:
13.                  1 – crescimento: f(x)>0x>e−1/2
2 – decrescimento: 
f(x)<00<x<e−1/2
14.                  Videoaula 18
15.                  Exercício 1
16.                  Encontre os valores máximo e mínimo absolutos da função f(x)=xx2+1 no intervalo [0,2].
Resp: É possível observar que f é contínua x[0,2], pois o denominador x2+1 é sempre diferente de 0. Assim, os ponto de máximo e mínimo absolutos podem coincidir com os pontos de máximo e mínimo locais (pontos críticos) ou então coincidir com os valores de f nos extremos do intervalo. Assim, calculando os valores de f(0) e f(2), temos:

17.                  f(0)=002+1=0 e f(2)=222+1=25
18.                 
Para os pontos críticos temos:

19.                  f(x)=1(x2+1)−x2x(x2+1)2=1−x2(x2+1)2, se f(x)=01−x2=0x=1, pois x=−1Dom(f)
20.                 
Calculando os valores de 
f no ponto crítico temos: f(1)=1/2.
Portanto, temos os seguintes valores: 
f(0)=0f(1)=1/2 e f(2)=2/5, logo os pontos de máximo e mínimo absolutos são, respectivamente, x=1 e x=0
21.                  Videoaula 19
22.                  Exercício 1
23.                  Seja a função f(x)=xex.
a. Encontre a Série de Taylor em torno do ponto 
x=0 (usualmente denominada Série de MacLaurin)
Resp: A Série de Taylor é uma expansão da forma:

24.                  f(x)=f(a)(xa)0+f(a)(xa)11!+f”(a)(xa)22!+…+f(n)(a)(xa)nn!.
25.                 
Calculemos então as derivadas de 
f:
f(x)=ex+xex=ex(1+x)f(0)=1
f”(x)=exex+xex=ex(2+x)f”(0)=2
f(3)(x)=ex+ex+ex+xex=ex(3+x)f(3)(0)=3
Assim, 
f(n)(x)=ex(n+x)f′(n)(0)=n. Portanto,

26.                  xex=0+1x11!+2x22!+3x33!++nxnn!=x(1+x1!+x22!++xn−1(n−1)!)xex=xi=0∞xii!
27.                  b. Encontre a Série de Taylor em torno do ponto x=1
Resp: f(1)=ef(1)=2e, …, f(n)(1)=(n+1)e. Portanto,

28.                  xex=e+2e(x−1)11!+3e(x−1)22!++(n+1)e(x−1)nn!xex=ei=0∞(i+1)(x−1)ii!
29.                  Videoaula 20
30.                  Exercício 1
31.                  Calcule a área compreendida entre o gráfico da função f(x)=x e o eixo-x, no intervalo [0,1], usando a definição de integral por Somas de Riemann.
Resp: Sabemos que a Soma de Riemann é dada por: S=i=0n−1[xi+1xi]f(ai), onde [xi+1xi] é uma partição uniforme de tamanho Δx=ban, sendo ai[xi,xi+1]. Tomemos subintervalos de tamanho t=1n, assim xi=i1n. Temos,

32.                  S=i=0n−1f(xi)Δx=i=0n−1f(in)1n=i=0n−1in1nS=1n2i=0n−1i=1n2(0+1+2+3++n−1)=1n2n(n−1)2
33.                 
Portanto,

34.                  S=limn→∞1n2n(n−1)2=12limn→∞1−1n=12

Postagem em destaque

Fire TV Stick Lite: Streaming em Full HD com Alexa por Apenas R$249,85

Marca: Amazon | Avaliação dos Clientes: 4,8 de 5 estrelas Streaming em Full HD com Controle Remoto por Voz com Alexa (sem controles de TV) A...